Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
iScience ; 26(2): 105949, 2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2179842

ABSTRACT

Vaccines have relieved the public health burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and globally inactivated vaccines are most widely used. However, poor vaccination accessibility and waning immunity maintain the pandemic, driving emergence of variants. We developed an inactivated SARS-CoV-2 (I-SARS-CoV-2) vaccine based on a viral isolate with the Spike mutation D614G, produced in Vero cells in a scalable bioreactor, inactivated with ß-propiolactone, purified by membrane-based steric exclusion chromatography, and adjuvanted with MF59-like adjuvant AddaVax. I-SARS-CoV-2 and a derived split vaccine induced persisting neutralizing antibodies in mice; moreover, lyophilized antigen was immunogenic. Following homologous challenge, I-SARS-CoV-2 immunized hamsters were protected against disease and lung pathology. In contrast with reports for widely used vaccines, hamster plasma similarly neutralized the homologous and the Delta (B.1.617.2) variant viruses, whereas the Omicron (B.1.1.529) variant was neutralized less efficiently. Applied bioprocessing approaches offer advantages regarding scalability and production, potentially benefitting worldwide vaccine coverage.

2.
Sci Adv ; 8(51): eadd7197, 2022 12 21.
Article in English | MEDLINE | ID: covidwho-2193380

ABSTRACT

The oral protease inhibitor nirmatrelvir is of key importance for prevention of severe coronavirus disease 2019 (COVID-19). To facilitate resistance monitoring, we studied severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) escape from nirmatrelvir in cell culture. Resistant variants harbored combinations of substitutions in the SARS-CoV-2 main protease (Mpro). Reverse genetics revealed that E166V and L50F + E166V conferred high resistance in infectious culture, replicon, and Mpro systems. While L50F, E166V, and L50F + E166V decreased replication and Mpro activity, L50F and L50F + E166V variants had high fitness in the infectious system. Naturally occurring L50F compensated for fitness cost of E166V and promoted viral escape. Molecular dynamics simulations revealed that E166V and L50F + E166V weakened nirmatrelvir-Mpro binding. Polymerase inhibitor remdesivir and monoclonal antibody bebtelovimab retained activity against nirmatrelvir-resistant variants, and combination with nirmatrelvir enhanced treatment efficacy compared to individual compounds. These findings have implications for monitoring and ensuring treatments with efficacy against SARS-CoV-2 and emerging sarbecoviruses.


Subject(s)
COVID-19 , Communicable Diseases , Humans , SARS-CoV-2/genetics , Cell Culture Techniques , Lactams , Nitriles
3.
Viruses ; 13(10)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1470997

ABSTRACT

We report the in vitro efficacy of ion-channel inhibitors amantadine, memantine and rimantadine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In VeroE6 cells, rimantadine was most potent followed by memantine and amantadine (50% effective concentrations: 36, 80 and 116 µM, respectively). Rimantadine also showed the highest selectivity index, followed by amantadine and memantine (17.3, 12.2 and 7.6, respectively). Similar results were observed in human hepatoma Huh7.5 and lung carcinoma A549-hACE2 cells. Inhibitors interacted in a similar antagonistic manner with remdesivir and had a similar barrier to viral escape. Rimantadine acted mainly at the viral post-entry level and partially at the viral entry level. Based on these results, rimantadine showed the most promise for treatment of SARS-CoV-2.


Subject(s)
Amantadine/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Memantine/pharmacology , Rimantadine/pharmacology , SARS-CoV-2/drug effects , A549 Cells , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Cell Line, Tumor , Chlorocebus aethiops , Denmark , Drug Repositioning , Humans , Ion Channels/antagonists & inhibitors , Vero Cells
4.
Antimicrob Agents Chemother ; 65(9): e0268020, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1360543

ABSTRACT

Antivirals targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could improve treatment of COVID-19. We evaluated the efficacy of clinically relevant hepatitis C virus (HCV) NS3 protease inhibitors (PIs) against SARS-CoV-2 and their interactions with remdesivir, the only direct-acting antiviral approved for COVID-19 treatment. HCV PIs showed differential potency in short-term treatment assays based on the detection of SARS-CoV-2 spike protein in Vero E6 cells. Linear PIs boceprevir, telaprevir, and narlaprevir had 50% effective concentrations (EC50) of ∼40 µM. Among the macrocyclic PIs, simeprevir had the highest (EC50, 15 µM) and glecaprevir the lowest (EC50, >178 µM) potency, with paritaprevir, grazoprevir, voxilaprevir, vaniprevir, danoprevir, and deldeprevir in between. Acyclic PIs asunaprevir and faldaprevir had EC50s of 72 and 23 µM, respectively. ACH-806, inhibiting the HCV NS4A protease cofactor, had an EC50 of 46 µM. Similar and slightly increased PI potencies were found in human hepatoma Huh7.5 cells and human lung carcinoma A549-hACE2 cells, respectively. Selectivity indexes based on antiviral and cell viability assays were highest for linear PIs. In short-term treatments, combination of macrocyclic but not linear PIs with remdesivir showed synergism in Vero E6 and A549-hACE2 cells. Longer-term treatment of infected Vero E6 and A549-hACE2 cells with 1-fold EC50 PI revealed minor differences in the barrier to SARS-CoV-2 escape. Viral suppression was achieved with 3- to 8-fold EC50 boceprevir or 1-fold EC50 simeprevir or grazoprevir, but not boceprevir, in combination with 0.4- to 0.8-fold EC50 remdesivir; these concentrations did not lead to viral suppression in single treatments. This study could inform the development and application of protease inhibitors for optimized antiviral treatments of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Hepatitis C, Chronic , Hepatitis C , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chlorocebus aethiops , Hepacivirus , Hepatitis C/drug therapy , Humans , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vero Cells , Viral Protease Inhibitors
5.
Sci Rep ; 11(1): 14571, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1315606

ABSTRACT

Effective and affordable treatments for patients suffering from coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are needed. We report in vitro efficacy of Artemisia annua extracts as well as artemisinin, artesunate, and artemether against SARS-CoV-2. The latter two are approved active pharmaceutical ingredients of anti-malarial drugs. Concentration-response antiviral treatment assays, based on immunostaining of SARS-CoV-2 spike glycoprotein, revealed that treatment with all studied extracts and compounds inhibited SARS-CoV-2 infection of VeroE6 cells, human hepatoma Huh7.5 cells and human lung cancer A549-hACE2 cells, without obvious influence of the cell type on antiviral efficacy. In treatment assays, artesunate proved most potent (range of 50% effective concentrations (EC50) in different cell types: 7-12 µg/mL), followed by artemether (53-98 µg/mL), A. annua extracts (83-260 µg/mL) and artemisinin (151 to at least 208 µg/mL). The selectivity indices (SI), calculated based on treatment and cell viability assays, were mostly below 10 (range 2 to 54), suggesting a small therapeutic window. Time-of-addition experiments in A549-hACE2 cells revealed that artesunate targeted SARS-CoV-2 at the post-entry level. Peak plasma concentrations of artesunate exceeding EC50 values can be achieved. Clinical studies are required to further evaluate the utility of these compounds as COVID-19 treatment.


Subject(s)
Artemisinins/pharmacology , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , A549 Cells , Animals , Artemisia annua/chemistry , Chlorocebus aethiops , Humans , Vero Cells , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL